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Nomenclature 

e  Unit Charge, 1.602 10
-19

 C 

Eb  Discharge Losses (We/A or eV/ion) 

f  Doubles to Singles Current Ratio 

fab  Ratio of Accelerator Grid Current to Beam Current 

f ( )  Coefficient of PP&C Beam Module Mass Equation (kg/kWe
0.87

) 

g0  Acceleration due to Earth’s gravity, 9.80665 m/s
2
 

ISP  Specific Impulse (seconds) 

Jb  Beam Current (A) 

Jd  Discharge Current (A) 

mBeam  PP&C Beam Module Mass (kg) 

mDischarge  PP&C Discharge Module Mass (kg) 

mi  Xenon atomic mass, 2.180 10
-25

 kg 
˙ m T   Total Mass Flow Rate (kg/s) 

  Total Thruster Efficiency 

  Doubles to Singles Correction Factor 

  Electrical Efficiency 

 Beam flatness parameter, the ratio of the average to peak current density 
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Electric Propulsion System Modeling for the 
Proposed Prometheus 1 Mission 

 

 
The proposed Prometheus 1 spacecraft would utilize nuclear electric propulsion to propel the spacecraft to its 

ultimate destination where it would perform its primary mission. As part of the Prometheus 1 Phase A studies, 
system models were developed for each of the spacecraft subsystems that were integrated into one overarching 
system model. The Electric Propulsion System (EPS) model was developed using data from the Prometheus 1 
electric propulsion technology development efforts. This EPS model was then used to provide both performance and 
mass information to the Prometheus 1 system model for total system trades. Development of the EPS model is 
described, detailing both the performance calculations as well as its evolution over the course of Phase A through 
three technical baselines. Model outputs are also presented, detailing the performance of the model and its direct 
relationship to the Prometheus 1 technology development efforts. These EP system model outputs are also analyzed 
chronologically showing the response of the model development to the four technical baselines during Prometheus 1 
Phase A. 
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u  Propellant Utilization Efficiency 

Pl  Sum of the Miscellaneous Power Losses (We) 

P  Total Power Into the Thruster (We) 

PPP&C  Total Power Into the Power Processing & Control Unit (kWe) 

R  R-ratio, ratio of beam plus coupling voltage to beam plus absolute value of accelerator voltage 

T  Thrust (N) 

Vb Beam Voltage (V) 

 

One task created as part of the Prometheus Project was the System Modeling and Analysis (SM&A) task.  The 

goal of this task was to develop a system model for the Prometheus 1 spacecraft
7
.  This model, containing eight 

modules representing different subsystems of the spacecraft, the launch vehicle, and mission design, was then used 

to perform linked analyses of the mission and systems
8
. The Electric Propulsion System (EPS) model, as part of the 

SM&A task, was required to accept inputs, such as power level and specific impulse, and provide an EPS designed 

for the particular inputs.  The EPS model would then output parameters needed by the Prometheus system model 

and other models, such as masses and efficiencies, so that the design could be iterated upon and a converged mission 

and system solution obtained. 

II. Electric Propulsion System Baseline Designs 

The Prometheus Project had three Technical Baselines that required EPS model development for the JIMO 

mission. Technical Baseline 2 (TB2) was defined in late 2003 and early 2004, Technical Baseline 2.5 (TB2.5) was 

defined in the Fall of 2004, and Prometheus Baseline 1 (PB1) was defined in late 2004 and early 2005. TB2 and 

TB2.5 were the results of the government-only Phase A studies, whereas PB1 incorporated the team from Northrop 

Grumman Space Technologies (NGST) after the award of the Phase A/B contract. An updated model, based on PB1, 

is also being developed, which includes updated ion thruster performance and lifetime modeling 

Two EPS designs were carried for TB2 because two ion thrusters and two power conversion systems were still 

under development. One design paired Brayton power conversion with the High Power Electric Propulsion
9
 (HiPEP) 

ion thruster and the other paired thermoelectric power conversion with the Nuclear Electric Xenon Ion System
10

 

(NEXIS) ion thruster. Each carried individual power and ISP set points as well as voltage input type to the PP&C 

system (AC for Brayton and DC for thermoelectric). TB2 also included a 4.5 kWe Hall thruster system to provide 

acceleration augmentation during the moon tour at Jupiter. The TB2 nominal parameters for each configuration are 

presented in Table 1. 

Table 1. Summary of Key Design Parameters for Each of the EPS Baselines 
PB1

Brayton/HiPEP TE/NEXIS Brayton/HiPEP Brayton/NEXIS Brayton/Herakles

Ion Thruster System

Total Power Into the EP System 95 kWe 75 kWe 130 kWe 130 kWe 180 kWe

Specific impulse 6500 seconds 5500 seconds 6000 seconds 6000 seconds 7000 seconds

Voltage Type into PP&C System AC DC AC AC AC

Ion Thruster Type HiPEP NEXIS HiPEP NEXIS Herakles

Number of Operational Ion Thrusters 4 6 6 6 6

Number of Spare Ion Thrusters 2 2 2 2 2

Tank Capacity 14000 kg 14000 kg 18000 kg 18000 kg 12000 kg

Hall thruster systems

Total Power to the Hall PPUs 24 kWe 25 kWe 0 kWe 0 kWe 120 kWe

Hall Specific impulse 2059 seconds 2059 seconds 2000 seconds

Number of Operational Hall Thrusters 5 5 0 0 6

Number of Spare Hall thrusters 1 1 0 0 0

Total Number of Reaction Control Hall Thrusters 0 0 12 12 12

TB2 TB2.5
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The Prometheus Project, started in 2002 as the Nuclear Systems Initiative, was tasked with developing nuclear 

electric propulsion (NEP) capability for the National Aeronautics and Space Administration (NASA) civilian space 
missions1. NASA conducted studies from mid-2002 through early 2003 to assess what was then called a Jupiter 
Icy Moon Tour mission2. Early in 2003, Congress appropriated funding to begin studying a Jupiter Icy Moons 
Orbiter (JIMO) mission1,3, which was originally slated as the first mission for this NEP system. Technology tasks 
were also started as part of the Prometheus Project to develop the reactor1, power conversion1,4,5, and electric 
propulsion systems1,6. 

 



While Brayton power conversion was selected for TB2.5 and all following baselines, TB2.5 still included two 

EPS designs because the separate HiPEP and NEXIS thruster developments were still continuing. TB2.5 redirected 

the function of the 4.5 kWe Hall thruster system to perform attitude and reaction control functions, requiring a larger 

quantity of thrusters. Each of the TB2.5 EPS designs used the same defining parameters as shown in Table 1. 

PB1 introduced the first unified design of the EPS. The HiPEP and NEXIS developments were combined and 

one ion thruster design was developed named Herakles
11

. This baseline also incorporated the team from NGST to 

help develop the baseline design. The EPS design for PB1 included a total of 26 electrostatic thrusters, 8 ion, 6 high 

power Hall thrusters, and 12 attitude/reaction control Hall thrusters
12

. The defining parameters for the PB1 EPS are 

shown in Table 1. 

III. Prometheus Electric Propulsion System Modeling 

The Prometheus EPS Model is required to estimate the mass of the EPS, performance information (efficiencies 

and quantities required of the different components), and in some cases dimensional information. Each of the EPS 

models estimates the mass, critical dimensions, and performance of the thruster systems as well as its associated 

support equipment (PP&C system, propellant management system, and xenon tank). Depending on the EPS 

configuration for each of the Technical Baselines, the model also calculates the mass and performance of up to two 

Hall thruster systems, one for acceleration augmentation and the other for attitude and reaction control. Some of the 

models also include a small xenon cold gas reaction control system. 

The models were designed to operate from a simple set of inputs, with the other pertinent parameters assumed 

based on the baseline designs. The ion thruster system was sized by providing input power, specific impulse, and 

total propellant throughput required, and based on calculations performed in the ion thruster model, the required 

quantity of thrusters was determined and used to calculate the mass of the system. The acceleration augmentation 

Hall thruster system was sized in much the same way as the ion system in the PB1 model, however for the TB2 

model, the input power was determined by specifying the quantity of ion thrusters turned off to operate the Hall 

system, not the Hall system input power directly. 

A. Ion Thrusters 

Two ion thruster performance models were implemented over the course of the model development. The first, a 

purely physics-based model, was used during the early stages of development of the ion thruster system hardware 

(HiPEP and NEXIS). The second, incorporates ion thruster testing experience and was implemented as the ion 

thruster hardware design was finalized (Herakles). Each of these models requires power input to the thruster and 

required specific impulse in order to calculate the thruster operating point and performance. The thruster mass 

models were tied directly to mass estimates provided through the technology development efforts, whereas the 

performance estimates were somewhat unrelated to the technology development until the Herakles thruster design 

was developed.  

 

1. Physics-based Ion Thruster Model 

The purely physics based model is adapted from work 

by Wilbur
13

 and Brophy
14

 with the Current Best Estimate 

(CBE) of performance constants provided by the ion 

thruster technology development team (see Table 2) and 

updated periodically as the thruster development 

progressed. The equations, as presented in simplest form, 

require inputs of beam current (Jb) and beam voltage (Vb), 

and calculate the thruster performance with knowledge of 

the performance constants. These equations were solved 

algebraically to require thruster input power and specific 

impulse as inputs for the physics-based model. 

Total thruster input power is calculated using the beam current and voltage as well as knowledge of the power 

losses of the thruster. 

 P = JbVb + JbEb + Jb fab
Vb

R + Pl  (1) 

The electrical efficiency of the thruster is the ratio of beam power to total power (Eq. 1). 

Table 2. Performance Constants for the Physics-

based Ion Thruster Model 

Parameter TB2 & TB2.5 PB1

u 0.87 0.86

Eb 170 W/A 210 W/A

f 0.05 0.053

0.98 0.98

Pl 30 W 0 W

R 0.9 0.86

fab 0.005 0.008  
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 =
JbVb
P

 (2) 

The doubles-to-singles correction factor is a function of the ratio of doubly charged to singly charged ions 

thruster constant. 

 =
1+ f 0.50.5

1+ f
 (3) 

The input beam current and propellant utilization allow calculation of the thruster total mass flow rate. 

 ˙ m T =
miJb

e u

 (4) 

The thrust produced by each ion thruster is a function of both beam current and voltage. 

 T =
2mi

e

 

 
 

 

 
 

1/ 2

JbVb
1/ 2 (5) 

Specific impulse is calculated with knowledge of the thrust produced and total mass flow rate. 

 I sp =
T

g0 ˙ m T
 (6) 

Finally, the total thruster efficiency is calculated as a function of the above calculated and specified efficiencies. 

 = u
2 2

 (7) 

Because sufficient modeling of the ion thruster life-limiting mechanisms had not been completed when this 

performance model was in use, a simple algorithm was used to determine the number of thrusters required at a given 

operating condition. First, the current density was limited to 2.2 mA/cm
2
, which determined the minimum quantity 

of operating thrusters required at any operating point. (The current density is defined as the beam current (Jb) 

divided by the active beam area of the thruster. The active beam area is the area of the ion thruster grids that contain 

orifices.) Second, the total 

propellant throughput per thruster 

was limited to 1.5 kg/cm
2
 of 

active beam area. This throughput 

limit determined the quantity of 

thrusters required to process the 

total amount of propellant. 

 

2. Physics and Test-based Ion 

Thruster Model 

The most recent iteration of 

the ion thruster performance 

model includes some performance 

relationships based on test data 

from the NSTAR
15

 and NEXT
16

 

thrusters as well as other 

precursor and lab hardware. This 

model uses many of the 

relationships presented in the last 

section as well as some of the Figure 1. Performance Model Comparison 
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same performance constants, but incorporates knowledge gained from ion thruster test experience. This inclusion of 

testing experience results in slightly lower thruster efficiency at the lower range of ISP. A comparison of these 

models is presented in Figure 1. 

 

3. Ion Thruster Life Model 

The current version of the life estimation model was implemented to replace a more crude method of estimating 

the lifetime of ion thrusters. The earlier methodology involved placing a current density limit on the thrusters at 

which current density it was assumed that the thruster could survive long enough to process 1.5 kg of xenon per 

square centimeter of grid area. The result was a conservative estimate of how long an ion thruster might survive, but 

it failed to provide any insight into what mechanism would cause the eventual failure, nor did it provide a sense of 

the effect of changes to the system. The new life estimation model was developed as a tool for systems engineers to 

provide what the old model lacked. 

The life estimation model provides rough estimates of thruster lifetime for systems engineering purposes and 

provides some insight into the ramifications of ion thruster operation at different conditions on thruster lifetime. 

However, it is not a detailed physical model. It is a collection of simple, independent fits to more detailed models 

and fits to empirical data. Four of the ion thruster failure modes modeled are discharge cathode failure due to barium 

depletion, discharge cathode failure due to keeper face erosion, electron back-streaming due to accelerator grid hole 

wall erosion, and accelerator grid failure due to pits-and-grooves erosion on the downstream surface. Other wear 

mechanisms have not been modeled, such as discharge cathode failure due to the formation of coatings on the 

emitting surface. The results the life model produces are obtained quickly with conservatism built-in and the 

interface is meant to be usable by non-experts. A separate life modeling and testing effort is developing detailed 

physics-based models that accurately predict lifetime and are validated by extensive experimental data
17

. 

At the nominal operating point of a system power of 180 kW at a specific impulse of 7000 seconds, the life 

model shows that the thruster will fail at approximately 164 khrs. The life model is also used to calculate the 

quantity of thrusters needed for the mission. To determine the quantity of thrusters needed, the ion thruster model 

iterates the life model through the applicable operating points and chooses the minimum number of thrusters that are 

able to achieve the required lifetime. 

 

4. Ion Thruster Mass Model 

The ion thruster mass model was simply a result of the ion thruster technology development. The TB2 and 

TB2.5 mass models were based on the individual HiPEP and NEXIS ion thruster CBE mass, while the PB1 models 

used the CBE of the Herakles ion thruster 

mass. The Herakles design incorporated 

technologies developed for both HiPEP 

and NEXIS as well as lessons learned, and 

was not merely a down select to one 

thruster as the mass estimate may imply
11

. 

Ion thruster masses used in the system 

model for each technical baseline are 

tabulated in Table 3. 

B. Acceleration Augmentation Hall Thruster System 

An additional electric propulsion system model module was developed to allow the evaluation of augmenting the 

thrust provided by the ion thrusters to meet minimum acceleration requirements. Initially, this system was based on 

a 4.5 kWe Hall thruster system, but after TB2 the need was recognized for a higher power, newly designed Hall 

thruster system. This auxiliary system was based on Hall thruster technology that has demonstrated specific 

impulses in the range of 1400 – 2800 seconds at power levels up to 50 kilowatts
18

. Thruster performance was 

predicted based on an empirical relationship between thruster efficiency and specific impulse based on a range of 

experimental data
18,19,20,21,22

. The empirical curve fit had the following form: 

 = 0.024 I sp
0.4

 (8) 

 Thruster mass was estimated based on the thruster power and thruster size. A second empirical relationship 

between specific impulse and discharge voltage based on the experimental data shown in Figure 2 was used to 

determine the discharge voltage corresponding to the specific impulse of interest. This empirical relationship was: 

Table 3. Ion Thruster Masses for Each Baseline Design 

TB2 TB2.5 PB1

HiPEP ion thruster 46.5 kg 46.5 kg

NEXIS ion thruster 28.7 kg 28.7 kg

Herakles ion thruster 49.5 kg  
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empirical fit 

 V = 0.013 I sp
1.35

 (9) 

The discharge current was then determined based on the desired thruster power and discharge voltage assuming 

thruster power could be estimated as the product of discharge voltage and discharge current. This assumption 

neglected the electrical power that is required to operate electromagnets, however, based on the prior experimental 

data this power is on the order of 1-2% of the total input power. As a result this error was considered acceptable. 

The thruster size was then determined based on propellant density requirements and the relationship between 

propellant mass flow rate and discharge current
23

. The result of these assumptions was a curve of Hall thruster 

specific mass as a function of specific impulse. This relationship, shown in Figure 3, was an attempt to capture the 

mass penalty associated with increased thruster size corresponding to low specific impulse operation resulting from 

a scaling methodology based on maintaining 

constant current and mass flow density. The 

state-of-the-art 10.1 kilogram 4.5 kWe BPT-

4000 Hall thruster specific mass
24

 compared 

favorably with the model of thruster specific 

mass versus specific impulse used for this 

investigation. The acceleration augmentation 

Hall thruster masses at each baseline design are 

shown in Table 4. 

Because this system was used to augment the acceleration of the ion thruster system, joint operation of ion and 

Hall thrusters was assumed. This secondary system, composed of both ion and Hall thrusters, provided sufficient 

acceleration to maintain stable orbits at Jupiter and its moons. Therefore, calculation of the performance of the 

combined system was required. The combined performance was calculated by summing the thrust and mass flow 

rate of the two systems and then solving for specific impulse and efficiency. 

C. Attitude and Reaction Control Hall Thruster System 

TB2.5 and PB1 utilized a Hall thruster system to perform attitude and reaction control functions for the 

spacecraft. The TB2.5 model utilized a 

reconfigured 4.5 kWe Hall thruster 

system to perform these functions. 

Specifically, the thruster quantity was 

increased to 12 thrusters cross-

strapped to six PP&C units. The PB1 

model introduced a smaller Hall 

thruster system, also composed of 12 
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Figure 3. Hall thruster specific mass 

 

Table 5. Attitude and Reaction Control System Parameters for 

Each Baseline Design 

TB2 TB2.5 PB1

Quantity of Thrusters 12 12

Thruster Input Power 4.5 kWe 0.7 kWe

Hall Thruster System Mass 274 kg 83 kg  

Table 4. Acceleration Augmentation Hall Thruster 

Parameters for Each Baseline Design 

TB2 TB2.5 PB1

Input Power 4.5 kWe 20.0 kWe

Hall Thruster Mass 12.3 kg 41.2 kg  
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thrusters cross-strapped to 6 PP&C units, with 700 We thrusters. The attitude and reaction control Hall thruster 

system parameters at each technical baseline are presented in Table 5. 

D. Power Processing and Control System 

The Power Processing and Control (PP&C) System model is a direct representation of the PP&C technology 

development
25

. Initially, two PP&C systems were designed to accept AC and DC input from the Brayton and 

thermoelectric power conversion systems, respectively. The DC PP&C system was scaled from the NEXT power-

processing unit
26

 while the AC PP&C system’s discharge and ancillary supplies (cathode heaters and keepers, 

accelerator supply, controller, etc.) were also scaled from the NEXT power-processing unit and mated with a newly 

designed transformer-rectifier module to provide main beam power. PP&C system efficiencies were estimated based 

on the current state of the technology development for each baseline and for each input voltage type and assumed 

constant over the range of input 

power levels (see Table 6). PP&C 

unit dimensions were also 

estimated to allow calculation of 

radiation shielding mass. Because 

calculation of radiation shielding 

mass was done externally to the 

EPS model and the PP&C unit 

dimensions have no impact on the 

EPS design, neither the PP&C 

unit dimensions nor the radiation 

shielding mass are discussed 

herein. 

The PP&C system mass model evolved with each technical baseline as the technology development progressed. 

The DC PP&C model implemented for TB2 combined component module masses from the NEXT power-

processing unit. These modules were either scaled up in mass, or extra components were added to accommodate 

higher power levels. The AC PP&C model evolved with each baseline design as the PP&C system technology was 

developed. Each AC PP&C model utilized a simple power function (Eq. 8) to size the beam module transformers 

with different coefficients that were dependent on the frequency of the input power supplied. 

 mBeam = f ( )PPP&C
0.87

 (12) 

The AC frequency coefficients (f ( )) are presented in Table 4. The masses of the other PP&C system components 

were modeled differently for each of the technical baselines. For TB2 and TB2.5 the discharge and ancillary power 

supplies were modeled as a constant 12 kg mass. The discharge power supply was modeled as 

 mDisch arg e = 0.105Jd  (13) 

for PB1 with a constant 17 kg carried for the ancillary supply mass. The PP&C unit masses at each of the technical 

baselines are also presented in Table 6. 

The Hall thruster PP&C units were modeled in much the same way as the ion thruster PP&C units. The TB2 and 

TB2.5 Hall systems, although performing different functions, were 4.5 kWe Hall thruster systems.  This Hall system 

was estimated to have a PP&C system design mass of 6 kg in the direct-drive configuration of TB2 and 12.6 kg for 

TB2.5, both with AC input.  The PB1 model used the transformer mass estimate (Eq. 12) and to it added 9 kg of 

mass for ancillary supplies 

for the acceleration 

augmentation Hall system 

and 4 kg for the attitude and 

reaction control system. 

System parameters for the 

Hall thruster PP&C systems 

at each baseline design are 

presented in Table 7. 

 

Table 6. Ion PP&C System Parameters for Each Baseline Design 

TB2 TB2.5 PB1

AC PP&C Unit

PP&C Unit Input Power 23.8 kWe 32.5 kWe 30.0 kWe

Efficiency 96.5% 96.5% 95.0%

AC Frequency 1000 Hz 1000 Hz 2200 Hz

f  ( ) 2.92 2.92 1.47

PP&C Unit Mass 57.9 kg 72.4 kg 50.3 kg

DC PP&C Unit

PP&C Unit Input Power 12.5 kWe

Efficiency 94.0%

PP&C Unit Mass 37.6 kg  

Table 7. Hall PP&C System Parameters for Each Baseline Design 
TB2.5 PB1

Brayton/HiPEP TE/NEXIS HiPEP or NEXIS Herakles

Acceleration Augmentation

PP&C Unit Input Power 4.7 kWe 4.7 kWe 20.0 kWe

Efficiency 96.0% 96.0% 94.0%

PP&C Unit Mass 6.0 kg 4.2 kg 28.9 kg

Attitude & Reacton Control

PP&C Unit Input Power 4.7 kWe 0.7 kWe

Efficiency 96.5% 94.0%

PP&C Unit Mass 12.6 kg 5.1 kg

TB2
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E. Propellant Management System 

The Propellant Management System mass model was comprised of three parts; the isolation and pressure 

regulation module, the xenon flow control assembly, and the xenon recovery system. The isolation and pressure 

regulation module isolates the tank from the downstream components and regulates the pressure of the xenon from 

the tank to a lower pressure useable by the xenon flow control assemblies. The xenon flow control assemblies 

receive the regulated xenon from the isolation and pressure regulation module and splits and controls the flow to the 

two cathodes and the main discharge of the ion thrusters. The xenon recovery system allows xenon to be extracted 

from the tank once the tank pressure reaches a pressure too low for normal propellant management system 

operation. One isolation and pressure regulation module and one xenon recovery system is needed, as well as one 

xenon flow controller per 

thruster. This model was 

based on the current design of 

the propellant management 

system at the time of the 

technical baselines. The 

propellant management 

system masses at each of the 

technical baselines are 

presented in Table 8. The 

changes in masses between 

technical baselines were due 

to updates to the CBE mass 

as the propellant management 

system design evolved. 

F. Xenon Tank  

Two different xenon tank models were implemented in the EPS model. The first was based on point designs at 

the time of each technical baseline, with any capacity deviation completed by scaling the tank mass linearly with 

propellant capacity mass. The second xenon tank model is a higher fidelity model based on previous tank design 

experience and the known properties of xenon at the 

required state. Both models assumed that the xenon 

was stored as a supercritical fluid. TB2 and TB2.5 

utilized the simple linearly scaled tank, while PB1 

used the higher fidelity tank model. The xenon tank 

masses are presented in Table 9. 

G. Xenon Reaction Control System 

A small xenon cold gas thruster system was included in TB2 and TB2.5 to cancel any perturbations due to the 

launch vehicle separation before power was available for the EPS. This system was designed using currently 

available commercial components. The ISP of this system was assumed to be 29 seconds, and a constant mass of 5.1 

kg was included in the EPS model for this system. 

IV. Electric Propulsion System Model Performance 

The performance of the EPS models developed for each of the technical baselines provides insight into both the 

baseline designs and the evolution of the EPS model. The four models, TB2, TB2.5, P1, and updated P1, were run at 

input power levels between 50 kWe and 300 kWe at a constant ISP of 7000 seconds (note that only the 

Brayton/HiPEP configuration was used for the TB2 model data). The total EPS mass output from each model, as 

well as marks denoting the three technical baselines can be seen in Figure 4. Mass differences between models are 

primarily due to EPS configuration changes (i.e. addition of Hall thruster systems). The discrete steps in the data 

occur when the EPS model increments the quantity of thrusters, either ion or Hall, to process the total amount of 

power input to the EPS. 

The mass breakdown of each EPS model output provides further understanding of the performance of the 

models. Figure 5 shows plots of the mass breakdown of each EPS model. Also detailed are the discrete jumps in the 

data where the quantity of ion thruster changes. Examination of the data labeled “Hall Mass,” also reveals discrete 

jumps where the quantity of Hall thrusters changes. The Hall thruster system mass for the TB2 model (shown in 

Table 8. Propellant Management System Masses for Each Baseline Design 
TB2.5 PB1

Brayton/HiPEP TE/NEXIS HiPEP or NEXIS Herakles

Shared Hardware

Isolation and Pressure Regulation Module 10.2 kg 10.2 kg 10.2 kg 16.4 kg

Xenon Recovery System 23.1 kg 23.1 kg 23.1 kg 23.0 kg

Ion Thruster Hardware

Xenon Flow Control Assembly 3.9 kg 3.9 kg 3.8 kg 5.6 kg

Tubing, fittings, structure, etc. 10.3 kg 10.3 kg 10.3 kg 6.3 kg

Quantity of Ion Thrusters 6 8 6 8

Acceleration Augmentation Hall Hardware

Xenon Flow Control Assembly 0.7 kg 0.7 kg 2.7 kg

Tubing, fittings, structure, etc. 0.0 kg 0.0 kg 1.7 kg

Quantity of Large Hall Thrusters 6 6 6

ACS Hall Thruster Hardware

Xenon Flow Control Assembly 0.7 kg 2.1 kg

Tubing, fittings, structure, etc. 0.2 kg 0.4 kg

Quantity of Large Hall Thrusters 12 12

Total 123.0 kg 151.4 kg 129.3 kg 192.0 kg

TB2

 

Table 9. Xenon Tank Masses for Each Baseline Design 

TB2 TB2.5 PB1

Tank Capacity 14000 kg 18000 kg 12000 kg

Tank Mass 361 kg 476 kg 352 kg  
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Figure 5a) is the result of setting the input power of the Hall thrusters as the power gained by shutting down one ion 

thruster at all input power levels, whereas the Hall thruster system mass for the two PB1 models (shown in Figure 5c 

and d) is the result of approximately maintaining the ratio of Hall system input power to total EPS input power. 

V. Future Plans for the Electric Propulsion System Model 

Future modifications to the EPS model fall into two categories; modifications based on technology development 

and capability enhancements.  Modifications based on technology development include implementation of any 

design changes throughout the development of the EPS hardware, modifying the performance assumptions as 

performance tests of the EPS hardware are completed, and updating life model assumptions to reflect the wear 

mechanisms examined through long duration hardware tests. Many performance and life tests are planned as part of 

the Prometheus Project, which may result in design modifications of EPS hardware.  These design modifications 

must be reflected in the EPS model in order to accurately represent the EPS in trades performed with the Prometheus 

system model.  Capability enhancements that may be implemented mainly add flexibility to the EPS model and 

make it a more general tool, not necessarily tailored to the proposed JIMO mission.  These capability enhancements 

could include several thruster modules representing different technologies that can be switched out easily depending 

on the mission requirements, a second tank and propellant management system model for cryogenic storage of 

propellant, or a higher fidelity approach to tracking uncertainties in the performance of the thrusters over the length 

of the mission. 

 
Figure 4. Mass Performance of the EPS Model Iterations 
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